

Best practices in energy efficient buildings Example from 2 schools

Drammen - Norway 67.000 Residents

Geir Andersen Technical Manager

Drammen Eiendom KF – a municipality-owned real estate company

Drammen Eiendom KF

We take care off 380.000 m2:

- 21 schools
- 25 kindergardens
- 7 senior residences
- Sports facilities
- The city hall
- swimming pool
- Drammen theatre
- Parking Houses
- District houses, cottages
- 1100 apartments/housing

Energy- and environment center

Buildings managed by great energy "pilots"

Operating responsibilities:

Energy management, maintance, tecnical quality in new buildings.

ENERGY STRATEGY

Goal: Good indoor air quality, low energy consumption, reduce greenhouse emissions

- Good building structure
- Demand control system for heating, ventilation and lighting
- Consume energy
 - · Where it's needed,
 - When it's needed
- Building automation system and skills is our tool

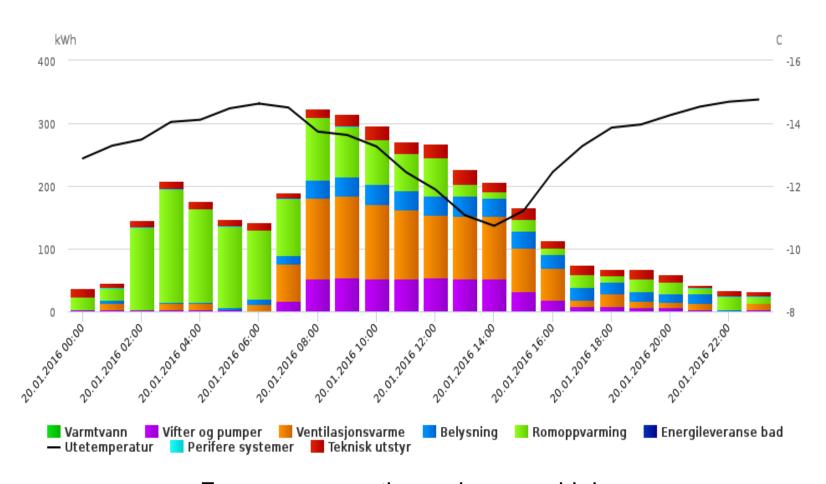
Build smart buildings and «drive» them smart

Marienlyst school in Drammen Norway's first passiv house school

FUTURE

KLIMAVENNLIG ARKITEKTUR OG BYUTVIKLING

Pilot prosjekt


At least 50% reduction of greenhouse gas emissions.

Smart technical equipment – Demand systems Very good insulation in roof, walls and floor Low air leaks and good windows

Marienlyst school

The measurement are divided in energyblocks)

Energy consumption pr. hour a cold day

Energyblocks

Energy consumption kWh/ m2 - Year

Energy blocks kWh / m2	TEK 10 Regulation	Measurd Marienlyst school - Passivhouse.
Romheating		
	39	16
Heat water	10	4
Ventilation heat	10	7
Fans & pumps	25	12
Lighting	22	12
Technical equipment	13	13
Sum energiposter	120	64

Heating system.

- Water based systems.
 - Floor heating and cooling during summer

Control

 Temperature control of individual rooms using the building automation system (BAS), interaction with the ventilation system.- free cooling

Ventilation

- Balanced ventilation system
 - High heat recovery efficiency (rotating heat exchanger)
 - Low SFP- factor, (Specific fan power)
 - Heat battery (Sufficient air when cold)

- Demand controlled ventilation
 - CO2 and temperature detectors
 - Temperature for free-cooling

Lighting system

- Low energy light (LED)
- Advanced demand control system
 - Switch on/off Motion detector, turns off
 - Adjusted lux-level
 - Light dimmer for consumers

And easy to use

EU Project FP7 «School of the Future - Towards Zero Emission with High Performance Indoor Environment»

4 Schools in Europa
Germany
Italy
Danmark
Norway

Brandengen school - Listed Brick building from 1914

Drammen Eiendom KF

Transforms into a low energy building. (Rehabilitation project)

UN Security Council

Townhall in Oslo

Designed by Arnstein Arneberg, a famous Norwegian architect

Energy performance

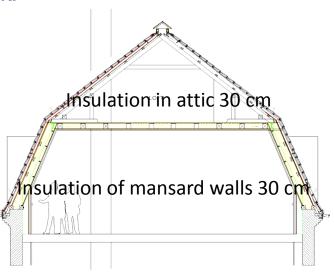
Existing building	230 kWh/m²a
National regulation normal practice - New	120 kWh/m²a
Calculated with suggested retrofit	81 kWh/m²a
Measurd energy Consumption 2017	75 kWh/m²a

Brandengen school - Starting up rehabilitation 2012

Transforms into a low energy building.
(Rehabilitation project)

Installing

- New windows
- New roof



Additional insulation

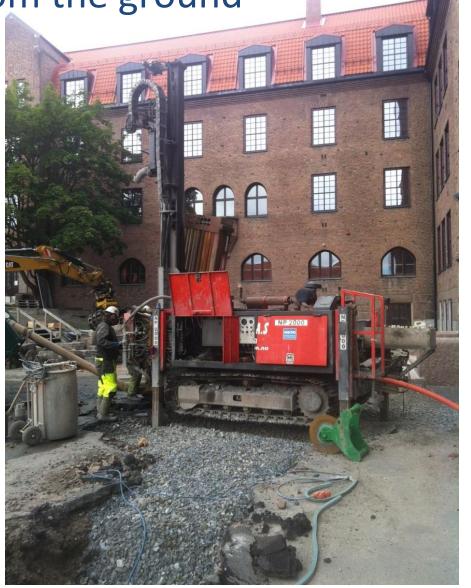
Drammen Eiendom KF

Additional insulation where possible; i.e. top and bottom of the building

Exterior insulation of basement walls

Ditches with triple function: drainage, insulation and collector pipes

School of the Future – Final Meeting – Copenhagen 26-27/10/15



Renewable from the ground

- 19 energy wells for collectors
- Distance between wells: 15 m
- Well depth: about 250 m

«The green gold»

Heat pump for high temperature requirement

The original central heating system was designed for high temperatures requiring 80°heat on «coldest day».

We have to use a new type heat pumps replacing oil burners in old 80/60 °C system.

This concept is based on high performance piston compressors.

Oil tank

Brandengen School Now a low energy green building

School of the Future – Final Meeting – Copenhagen 26-27/10/15

Thank you for your attention